Error Estimates for Deferred Correction Methods in Time

نویسنده

  • Wendy Kress
چکیده

In this paper, we consider the deferred correction principle for high order accurate time discretization of partial differential equations (PDEs) and ordinary differential equations (ODEs). Deferred correction is based on a lower order method, here we use second order accurate A-stable methods. Solutions of higher order accuracy are computed successively. The computational complexity for calculating higher order solutions is comparable to the complexity of the lower order method. There is no stability restraint on the size of the time-step. Error estimates are derived and the application of the schemes to initial boundary value problems is discussed in detail. The theoretical results are supported by a series of numerical experiments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Economical Error Estimates for Block Implicit Methods for ODEs via Deferred Correction

Deferred correction is a widely used tool for improving the numerical approximation to the solution of ODE problems [10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 23]. Indeed, it allows to estimate the error due to the use of discrete methods. Such an estimate may be a global one, in the case of continuous BVPs, or a local one, when IVPs are to be approximated [2, 7]. Recently, it has been implemente...

متن کامل

Comments on High Order Integrators Embedded within Integral Deferred Correction Methods

Spectral deferred correction (SDC) methods for solving ordinary differential equations (ODEs) were introduced by Dutt, Greengard and Rokhlin, [3]. In this paper, we study the properties of these integral deferred correction methods, constructed using high order integrators in the prediction and correction loops, and various distributions of quadrature nodes. The smoothness of the error vector a...

متن کامل

High Order Finite Difference Methods in Space and Time

Kress, W. 2003. High Order Finite Difference Methods in Space and Time. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 880. 28 pp. Uppsala. ISBN 91-554-5721-5 In this thesis, high order accurate discretization schemes for partial differential equations are investigated. In the first paper, the linearized two-dimensiona...

متن کامل

Semi-implicit Krylov Deferred Correction Methods for Ordinary Differential Equations

In the recently developed Krylov deferred correction (KDC) methods for ordinary differential equation initial value problems [11], a Picard-type collocation formulation is preconditioned using low-order time integration schemes based on spectral deferred correction (SDC), and the resulting system is solved efficiently using a Newton-Krylov method. Existing analyses show that these KDC methods a...

متن کامل

Conservative Multi-Implicit Spectral Deferred Correction Methods for Reacting Gas Dynamics ?

In most models of reacting gas dynamics, the characteristic time scales of chemical reactions are much shorter than the hydrodynamic and diffusive time scales, rendering the reaction part of the model equations stiff. Moreover, nonlinear forcings may introduce into the solutions sharp gradients or shocks, the robust behavior and correct propagation of which require the use of specialized spatia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003